Abstract

This survey presents results on the stability of elevation solitary waves in axisymmetric elastic membrane tubes filled with a fluid. The elastic tube material is characterized by an elastic potential (elastic energy) that depends non-linearly on the principal deformations and describes the compliant elastic media. Our survey uses a simple model of an inviscid incompressible fluid, which nevertheless makes it possible to trace the main regularities of the dynamics of solitary waves. One of these regularities is the spectral stability (linear stability in form) of these waves. The basic equations of the ‘axisymmetric tube – ideal fluid’ system are formulated, and the equations for the fluid are averaged over the cross-section of the tube, that is, a quasi-one-dimensional flow with waves whose length significantly exceeds the radius of the tube is considered. The spectral stability with respect to axisymmetric perturbations is studied by constructing the Evans function for the system of basic equations linearized around a solitary wave type solution. The Evans function depends only on the spectral parameter , is analytic in the right-hand complex half-plane , and its zeros in coincide with unstable eigenvalues. The problems treated include stability of steady solitary waves in the absence of a fluid inside the tube (the case of constant internal pressure), together with the case of local inhomogeneity (thinning) of the tube wall, the presence of a steady fluid filling the tube (the case of zero mean flow) or a moving fluid (the case of non-zero mean flow), and also the problem of stability of travelling solitary waves propagating along the tube with non-zero speed. Bibliography: 83 titles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.