Abstract

We investigate the dynamics of individual run-and-tumble particles in a convective flow which is a prototype of fluid flows with transport barriers. We consider the most prevalent case of swimmers denser than the background fluid. As a result of gravity and the effects of the carrying flow, in the absence of swimming the particles either sediment or remain in a convective cell. When run-and-tumble also takes place, the particles may move to upper convective cells. We derive analytically the probability of uprise. Since that probability in a given fluid flow can vary strongly across species, our findings inspire a purely dynamical mechanism for species extraction in the dilute regime. Numerical simulations support our analytical predictions and demonstrate that a judicious choice of the fluid flow’s parameters can lead to particle sorting with an arbitrary degree of purity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.