Abstract
We measured the presence, viability and potential toxicity of cyanobacteria in ships’ ballast tanks during three domestic voyages through the North American Great Lakes. Using molecular methods, the toxin-producing forms of Microcystis and Anabaena were monitored in ballast water after ships’ ballast tanks were filled at their first port of call, and at subsequent ports as ships transited the Great Lakes. Microcystis was detected in ballast water at intermediate and final ports of call in all three experiments, but the presence of Anabaena was more variable, suggesting low abundance or patchy distribution in ballast tanks. Both species were detected in ballast water up to 11 days old. Detection of the microcystin synthetase gene, mcyE, in ballast tanks indicated entrained cells were capable of producing microcystin, and further analyses of RNA indicated the toxin was being expressed by Microcystis, even after 11 days in dark transit. These data demonstrate within-basin transport and delivery of planktonic harmful algal bloom (HAB) species to distant ports in the world's largest freshwater reservoir, with potential implications for drinking water quality. These implications are discussed with respect to management of microbial invasions and the fate of introduced phytoplankton in their receiving environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.