Abstract

The breakdown of dynamical scaling for a dilute polymer solution in two dimensions has been suggested by Shannon and Choy [Phys. Rev. Lett. 79, 1455 (1997)]. However, we show here through extensive computer simulations that dynamical scaling holds when the relevant dynamical quantities are properly extracted from finite systems. To verify dynamical scaling, we present results based on mesoscopic simulations in two dimensions for a polymer chain in a good solvent with full hydrodynamic interactions. We also present analytical arguments for the size dependence of the diffusion coefficient and find excellent agreement with the present large-scale simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call