Abstract

The capsid dynamics of filamentous bacteriophages is related to their function, stability, and interactions with the genome, and can be assessed by measuring the chemical shift anisotropy (CSA) of 15 N amides, which are sensitive to large amplitude motions. In this study, CSA recoupling experiments under magic-angle spinning NMR were used to probe the dynamics of the y21m capsid mutant of fd bacteriophage. Based on fitting the generated CSA lineshapes, residues located in the N-terminus undergo increased motional amplitudes suggesting its global motion, whereas other backbone residues are rigid, and imply a tight hydrophobic packing of the phage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.