Abstract

Domain wall processes (domain wall configuration, propagation, and collapse) in magnetostrictive amorphous wires of the composition Fe/sub 77.5/Si/sub 7.5/B/sub 15/ were investigated. The wires were held under tensile stress (up to 1700 MPa in the case of as-quenched). The domain wall length and normal mobility (or damping) as functions of applied stress were found experimentally and from an ellipsoidal domain model. This allows the losses to be separated into eddy current and spin relaxation contributions. It was demonstrated that the spin relaxation contribution to the total damping parameter becomes dominant with increase of tension and leads to a dramatic decrease of the wall mobility. This is the reason cold-drawn and then tension-heated wires with high residual stress exhibit a much lower mobility in spite of the smaller diameter. The process of domain collapse at a collision of two domain walls is accompanied by a very sharp voltage pulse. It is shown that during the collapse the domain is affected by a growing internal magnetic field connected with an excess of domain surface energy in comparison with magnetostatic energy.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.