Abstract

An equation is proposed for the pulsation of a single cavity in an abnormally compressible bubbly liquid which is in pressure equilibrium and whose state is described by the Lyakhov equation. In the equilibrium case, this equation is significantly simplified. Numerical analysis is performed of the bubble dynamics and acoustic losses (the profile and amplitude of the radiation wave generated on the bubble wall from the side of the liquid). It is shown that as the volumetric gas concentration k0 in the equilibrium bubbly medium increases, the degree of compression of the cavity by stationary shock wave decreases and its pulsations decrease considerably and disappear already at k0 = 3%. In the compression process, the cavity asymptotically reaches an equilibrium state that does not depend on the value of k0 and is determined only by the shock-wave amplitude. The radiation wave takes the shape of a soliton whose amplitude is much smaller and whose width is considerably greater than the corresponding parameters in a single-phase liquid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.