Abstract
Understanding the mechanisms of efficient and robust energy transfer in organic systems provides us with insights for the optimal design of artificial systems. In this paper, we explore the dynamics of excitation energy transfer (EET) through a complex quantum network by a toy model consisting of three sites coupled to environments. We study how the coherent evolution and the noise-induced decoherence work together to reach efficient EET and illustrate the role of the phase factor attached to the coupling constant in the EET. By comparing the differences between the Markovian and non-Markovian dynamics, we discuss the effect of environment and the spatial structure of system on the dynamics and the efficiency of EET. A intuitive picture is given to show how the exciton is transferred through the system. Employing the simple model, we show the robustness of EET efficiency under the influence of the environment and elucidate the important role of quantum coherence in EET. We go further to study the quantum feature of the EET dynamics by quantumness and show the importance of quantum coherence from a different perspective. We calculate the energy current in the EET and its quantumness, and results for different system parameters are presented and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physical review. E, Statistical, nonlinear, and soft matter physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.