Abstract

We consider a modified Noguchi electrical transmission line and examine the effects of a linear capacitance C(s) on the wave characteristics while considering the semidiscrete approximation. It appears that wave modulations in the network are governed by a dispersive nonlinear Schrödinger equation whose coefficients are shown to be a function of C(s). We show that the use of this linear capacitance makes the filter more selective. We also show that the width of the unstable regions increases while that of the stable regions decreases with C(s) adding consequently the width of the frequency domain where bright solitons exist. Furthermore, we establish the existence of one more region (compared to the work of Marquié et al. [Marquié et al., Phys. Rev. E 49, 828 (1994)]) in the dispersion curve that allows the motion of envelope solitons of higher frequency in the system. Numerical and experimental investigations done on the model confirm our analytical predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.