Abstract
The dynamics of fast linear scan (LS) ASV for the simultaneous detection of Cd, Pb, and Cu was investigated at various scan rates (0.5-10 V/s) and at different metal ion concentrations (50-800 nM) utilizing ultrathin mercury films (9 nm) at a conventional size (d(0) = 1 mm) electrode. Results of the investigation show that when the thin films were utilized, diffusion of metals through the mercury film was not the rate-limiting step of the stripping process at moderate to fast scan rates (0.5-10 V/s). A fairly linear relationship between the peak height and scan rate was observed at scan rates (0.5-10 V/s) beyond the upper limit of the theoretical model for the behavior of LS-ASV. In addition, peak width at half-height (b(1/2)) as low as 33 mV was achieved at 0.5 V/s. The behavior of LS-ASV in terms of peak width at these scan rates is thus different from what the theoretical model of LS-ASV would have predicted. For the ultrathin mercury films, at least two additional factors, kinetics and concentration, have significant effects on practical LS-ASV. Experimental results show that the stripping process of Cu was primarily kinetic-controlled for fast scans, while those for Cd and Pb were dependent on both scan rates and concentrations. The ultrathin mercury film resulted in a significant enhancement of the ratio of signal-to-baseline slope (i(p)/Δi(b), a ratio used to measure the effectiveness of discrimination of the peak signal against the steep sloping baseline in LS-ASV) for Cd and Pb stripping peaks, but only a slight enhancement for Cu stripping peaks. The optimal performance of LS-ASV in terms of sensitivity, peak width, and enhancement of the i(p)/Δi(b) ratio for the three metals was achieved at 2 V/s. Because of the high reproducibility of the background currents of the stable in situ MTFs, background subtraction was carried out at 2 V/s with little hysteresis. This feature, combined with the enhancement of the i(p)/Δi(b) ratio at the fast scan rate of 2 V/s, allowed for the detection of sub-ppb levels of Cd, Pb, and Cu at a deposition time of 2 min.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.