Abstract
In this paper, we develop a diffusivepredator–prey model with toxins under the homogeneous Neumann boundary condition. First, the persistence property and global asymptotic stability of the constant steady states are established. Then by analyzing the associated characteristic equation, we derive explicit conditions for the existence of nonconstant steady states that emerge through steady-state bifurcation from related constant steady states. Furthermore, the existence and nonexistence of nonconstant positive steady states of this model are studied by considering the effect of large diffusivity. Finally, in order to verify our theoretical results, some numerical simulations are also included. These explicit conditions are numerically verified in detail and further compared to those conditions ensuring Turing instability. It is shown that the numerically observed behaviors are in good agreement with the theoretically proposed results. All theoretical analyses and numerical simulations show that toxic substances have a perceptible effect on the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.