Abstract

A 4-DOF redundantly actuated parallel robot (RAPR) for jaw movement achieved by adding two point-contact constraints (higher-kinematic-pairs, HKPs) is presented. The inverse dynamics and driving force optimization model based on pseudo-inverse method are established. In order to overcome the disequilibrium of driving forces of the redundant chains caused by inclusion of point-contact constraints, an optimized torque distribution based force/position hybrid control (OTDFP control) method for trajectory tracking is proposed for this RAPR. Experiments are carried out to evaluate the OTDFP control. Comparison with the conventional position control is performed, showing that the OTDFP control can reduce torque fluctuation and tracking errors of the RAPR. The chewing experiment of silicone shows the RAPR is not only able to track mandibular movement, but also able to emulate chewing force and temporomandibular joint (TMJ) force under the OTDFP control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.