Abstract
The use of solar chimneys for energy production was suggested more than 100 years ago. Unfortunately, this technology has not been realized on a commercial scale, in large part due to the high cost of erecting tall towers using traditional methods of construction. Recent works have suggested a radical decrease in tower cost by using an inflatable self-supported tower consisting of stacked toroidal bladders. While the statics deflections of such towers under constant wind have been investigated before, the key for further development of this technology lies in the analysis of dynamics, which is the main point of this paper. Using Lagrangian reduction by symmetry, we develop a fully three-dimensional theory of motion for such towers and study the tower's stability and dynamics. Next, we derive a geometric theory of optimal control for the tower dynamics using variable pressure inside the bladders and perform detailed analytical and numerical studies of the control in two dimensions. Finally, we report on the results of experiments demonstrating the remarkable stability of the tower in real-life conditions, showing good agreement with theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.