Abstract

The processes of molecular clustering, condensation, nucleation, and growth of bulk materials on surfaces, represent a spectrum of vapor-surface interactions that are important to a range of physical phenomena. Here, we describe studies of the initial stages of methanol condensation on graphite, which is a simple model system where gas-surface interactions can be described in detail using combined experimental and theoretical methods. Experimental molecular beam methods and computational molecular dynamics simulations are used to investigate collision dynamics and surface accommodation of methanol molecules and clusters at temperatures from 160 K to 240 K. Both single molecules and methanol clusters efficiently trap on graphite, and even in rarified systems methanol-methanol interactions quickly become important. A kinetic model is developed to simulate the observed behavior, including the residence time of trapped molecules and the quantified Arrhenius kinetics. Trapped molecules are concluded to rapidly diffuse on the surface to find and/or form clusters already at surface coverages below 10-6 monolayers. Conversely, clusters that undergo surface collisions fragment and subsequently lose more loosely bound molecules. Thus, the surface mediates molecular collisions in a manner that minimizes the importance of initial cluster size, but highlights a strong sensitivity to surface diffusion and intermolecular interactions between the hydrogen bonded molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.