Abstract
We aim to identify the physical processes which occur in the magnetic network of the chromosphere and which contribute to its dynamics and heating. Specifically, we study the propagation of transverse (kink) MHD waves which are impulsively excited in flux tubes through footpoint motions. When these waves travel upwards, they get partially converted to longitudinal waves through nonlinear effects (mode coupling). By solving the nonlinear, time-dependent MHD equations we find that significant longitudinal wave generation occurs in the photosphere typically for Mach numbers as low as 0.2 and that the onset of shock formation occurs at heights of about 600 km above the photospheric base. We also investigate the compressional heating due to longitudinal waves and the efficiency of mode coupling for various values of the plasma β, that parameterises the magnetic field strength in the network. We find that this efficiency is maximum for field strengths corresponding to , when the kink and tube wave speeds are almost identical. This can have interesting observational implications. Furthermore, we find that even when the two speeds are different, once shock formation occurs, the longitudinal and transverse shocks exhibit strong mode coupling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.