Abstract

This paper provides an overview of the universal study of families of dynamical systems undergoing a Hopf-Neĭmarck-Sacker bifurcation as developed in [1–4]. The focus is on the local resonance set, i.e., regions in parameter space for which periodic dynamics occurs. A classification of the corresponding geometry is obtained by applying Poincaré-Takens reduction, Lyapunov-Schmidt reduction and contact-equivalence singularity theory, equivariant under an appropriate cyclic group. It is a classical result that the local geometry of these sets in the nondegenerate case is given by an Arnol’d resonance tongue. In a mildly degenerate situation a more complicated geometry given by a singular perturbation of a Whitney umbrella is encountered. Our approach also provides a skeleton for the local resonant Hopf-Neĭmarck-Sacker dynamics in the form of planar Poincaré-Takens vector fields. To illustrate our methods a leading example is used: A periodically forced generalized Duffing-Van der Pol oscillator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.