Abstract
SUMMARYNon-core spliceosome components are essential, conserved regulators of alternative splicing. They provide concentration-dependent control of diverse pre-mRNAs. Many splicing factors direct unproductive splicing of their own pre-mRNAs through negative autoregulation. However, the impact of such feedback loops on splicing dynamics at the single-cell level remains unclear. Here, we developed a system to quantitatively analyze negative autoregulatory splicing dynamics by splicing factor SRSF1 in response to perturbations in single HEK293 cells. We show that negative autoregulatory splicing provides critical functions for gene regulation, establishing a ceiling of SRSF1 protein concentration, reducing cell-cell heterogeneity in SRSF1 levels, and buffering variation in transcription. Most important, it adapts SRSF1 splicing activity to variations in demand from other pre-mRNA substrates. A minimal mathematical model of autoregulatory splicing explains these experimentally observed features and provides values for effective biochemical parameters. These results reveal the unique functional roles that splicing negative autoregulation plays in homeostatically regulating transcriptional programs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.