Abstract

ContextSeagrass meadows act as efficient natural carbon sinks by sequestering atmospheric CO2 and through trapping of allochthonous organic material, thereby preserving organic carbon (Corg) in their sediments. Less understood is the influence of landscape configuration and transformation (land-use change) on carbon sequestration dynamics in coastal seascapes across the land–sea interface.ObjectivesWe explored the influence of landscape configuration and degradation of adjacent mangroves on the dynamics and fate of Corg in seagrass habitats.MethodsThrough predictive modelling, we assessed sedimentary Corg content, stocks and source composition in multiple seascapes (km-wide buffer zones) dominated by different seagrass communities in northwest Madagascar. The study area encompassed seagrass meadows adjacent to intact and deforested mangroves.ResultsThe sedimentary Corg content was influenced by a combination of landscape metrics and inherent habitat plant- and sediment-properties. We found a strong land-to-sea gradient, likely driven by hydrodynamic forces, generating distinct patterns in sedimentary Corg levels in seagrass seascapes. There was higher Corg content and a mangrove signal in seagrass surface sediments closer to the deforested mangrove area, possibly due to an escalated export of Corg from deforested mangrove soils. Seascapes comprising large continuous seagrass meadows had higher sedimentary Corg levels in comparison to more diverse and patchy seascapes.ConclusionOur results emphasize the benefit to consider the influence of seascape configuration and connectivity to accurately assess Corg content in coastal habitats. Understanding spatial patterns of variability and what is driving the observed patterns is useful for identifying carbon sink hotspots and develop management prioritizations.

Highlights

  • The configuration of landscape mosaics strongly influences the strength and spatial patterning ofA

  • We explored the influence of landscape configuration and degradation of adjacent mangroves on the dynamics and fate of Corg in seagrass habitats

  • The dominating seagrass species in the bay is Enhalus acoroides (Ea), while mixed meadows composed of Cymodocea rotundata/ serrulata and Thalassia hemprichii (Cym/Th) and meadows dominated by Thalassodendron ciliatum (Tc) are common (Fig. 2)

Read more

Summary

Objectives

We explored the influence of landscape configuration and degradation of adjacent mangroves on the dynamics and fate of Corg in seagrass habitats. Methods Through predictive modelling, we assessed sedimentary Corg content, stocks and source composition in multiple seascapes (km-wide buffer zones) dominated by different seagrass communities in northwest Madagascar. The study area encompassed seagrass meadows adjacent to intact and deforested mangroves

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call