Abstract

AbstractBased on ecospectra of 66 published carpofloras we study dynamics and evolution of Turgay vegetation in Western Siberia during the early Oligocene to earliest Miocene. The ecospectra are obtained using a Plant Functional Type (PFT) classification system comprising 26 herbaceous to arboreal PFTs. The carpofloras originate from seven floristic levels covering the time‐span from the Rupelian to early Aquitanian. Key elements of these levels are documented based on original collection materials. Although impacted by local edaphic conditions, the ecospectra can be interpreted in terms of changing vegetation. Our data show that warm temperate mesophytic, mixed conifer‐broad‐leaved deciduous forest assemblages persisted throughout the Oligocene and earliest Miocene in this core area of Turgai type vegetation. This is in line with comparatively stable climate conditions persisting in the studied time‐span, showing a minor temperature decline and coeval moderate increase in seasonality and precipitation. Concurrently, the reconstructed ecospectra contradict significant continental drying throughout the Oligocene and earliest Miocene. Spatial variability of the proportions of PFTs within the single floristic horizons primarily reflects local edaphic conditions. High diversities of PFTs characteristic for swamp vegetation are mainly confined to the early Oligocene and have a regional focus. Our results indicate that taxonomical diversity, particularly concerning mesic herbs and deciduous shrubs and trees, increased towards the end of the Oligocene. This increase in biodiversity probably can be attributed to an increase in rainfall and extension of terrestrial habitats after the final retreat of the Paratethys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call