Abstract

We examine the dynamics of a thin viscous liquid film on the outer surface of a solid sphere rotating around its vertical axis in the presence of gravity. An asymptotic model describing the evolution of the film thickness is derived in the rotating frame based on the lubrication approximation. The model includes the centrifugal and gravity forces and the stabilizing effect of surface tension. Depending on the values of the parameters, the problem admits different types of steady states: one with a uniformly positive film thickness, or those with one or two dry zones on the sphere. We prove that all steady states are energy minimizers and hence global attractors for axisymmetric states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.