Abstract
Human aquaporin-2 (AQP2) is the principal water channel in the human kidney. Any alteration of its physiological functioning may lead to the water imbalance and consequently diseases in humans, especially nephrogenic diabetes insipidus (NDI). Although many of the mutations associated with NDI are experimentally discovered and examined, a molecular level characterization of the structure and transport mechanism is still missing. In this paper, the gating effects of selectivity filter (SF) as wide/narrow states on the mechanism and dynamics of water permeation within the wild-type AQP2 and two NDI causing mutants as AQP2-V168M and AQP2-G64R are studied for the first time. The analysis of the 200 ns trajectory shows that the SF region in AQP2 is not only a selectivity filter, as previously reported but also it performs as a gating site depending on the side-chain conformation of His172. The assignment of the wide/narrow states of SF is supported by computing the free energy and permeability through the AQP2. Moreover, by exploring the effects of V168M and G64R mutants on the AQP2 structure during 200 ns trajectories, remarkable increases of energy barriers are observed in the middle and cytoplasmic side of the pore, respectively. Interestingly, it is found that due to the variable conformations of the SF region as wide/narrow, the effect of the NDI causing mutants on the average water permeability can be revealed with notably better accuracy by finding the wide states in the wild-type and mutated types of AQP2 and comparing the osmotic permeabilities for this state. Communicated by Ramaswamy H. Sarma
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.