Abstract

We present a combination of analytic calculations and a powerful numerical method for large spin baths in the low-field limit. The hyperfine interaction between the central spin and the bath is fully captured by the density matrix renormalization group. The adoption of the density matrix renormalization group for the central spin model is presented and a proper method for calculating the real-time evolution at infinite temperature is identified. In addition, we study to which extent a semiclassical model, where a quantum spin-1/2 interacts with a bath of classical Gaussian fluctuations, can capture the physics of the central spin model. The model is treated by average Hamiltonian theory and by numerical simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.