Abstract

Objective. Fractional calculus plays a key role in the analysis of neural dynamics. In particular, fractional calculus has been recently exploited for analyzing complex biological systems and capturing intrinsic phenomena. Also, artificial neural networks have been shown to have complex neuronal dynamics and characteristics that can be modeled by fractional calculus. Moreover, for a neural microcircuit placed on the spinal cord, fractional calculus can be employed to model the central pattern generator (CPG). However, the relation between the CPG and the motor cortex is still unclear. Approach. In this paper, fractional-order models of the CPG and the motor cortex are built on the Van der Pol oscillator and the neural mass model (NMM), respectively. A self-consistent mean field approximation is used to construct the potential landscape of the Van der Pol oscillator. This landscape provides a useful tool to observe the 3D dynamics of the oscillator. To infer the relation of the motor cortex and CPG, the coupling model between the fractional-order Van der Pol oscillator and the NMM is built. As well, the influence of the coupling parameters on the CPG and the motor cortex is assessed. Main results. Fractional-order NMM and coupling model of the motor cortex and the CPG are first established. The potential landscape is used to show 3D probabilistic evolution of the Van der Pol oscillator states. Detailed observations of the evolution of the system states can be made with fractional calculus. In particular, fractional calculus enables the observation of the creation of stable modes and switching between them. Significance. The results confirm that the motor cortex and CPG have associated modes or states that can be switched based on changes in the fractional order and the time delay. Fractional calculus and the potential landscape are helpful methods for better understanding of the working principles of locomotion systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call