Abstract

AbstractThis paper investigates the constraint and coupling characteristics of underactuated manipulators by proposing an elastic model of the manipulator and examining the second order constraint equation. A dynamic model and a coupling constraint equation are developed from a Jacobian matrix and the Newton‐Euler formulation. The inertia matrix and the Christoffel tensor are analyzed and decomposed into the part concerning actuated joints and the part concerning passive joints. This decomposition is further extended to the dynamic coupling equation and generates an actuation coupling matrix and a dynamic coupling tensor. Two new dynamic coupling indices are hence identified. One is related to an actuation input and the other is related to centrifugal and Coriolis forces. The former reveals the dynamic coupling between the input and the acceleration of passive joints and gives the actuation effect on the passive joints. The latter reveals the dynamic coupling between the centrifugal and Coriolis forces and the acceleration of passive joints and provides the centrifugal and Coriolis effect on the acceleration of passive joints. The study reveals the coupling characteristics of an underactuated manipulator. This is then demonstrated in a three‐link manipulator and extended to a serial manipulator with passive prismatic joint. © 2003 Wiley Periodicals, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.