Abstract

Landslides are efficient erosion processes that release large volumes of sediments in rivers, posing threats to nearby population when remobilised during large flood events. Thus, understanding the dynamics and controls of landslides and quantifying the volumes involved in subsequent sediment transfer are crucial for resilient development in mountainous settings. In this study, we use the very high standing island of Réunion (Indian Ocean) as a natural laboratory to investigate the interaction between landslides, sediment transfer and climatic forcing. This volcanic island, characterised by mountainous landscapes resulting from intense river incision and frequent landslides, shows physical erosion and chemical weathering rates exceeding most of active mountain belts (Gayer et al, 2019).  Here, we focus on studying the Grand Éboulis landslide short-term (i.e bi-monthly) and mid-term (i.e multi-decennial) dynamics using SAR imagery and photogrammetry. First, we computed cumulative displacement maps and time series using the AMSTer software and Sentinel-1 StripMap images acquired every 12 days between 2017 and 2021. These time series reveal velocity fluctuations, including acceleration and/or deceleration episodes, correlated with extreme climatic events such as intense precipitation and drought episodes. Furthermore, from 2017 to 2021, Grand Éboulis exhibited a characteristic slow-moving landslide behaviour with a consistent eastward movement of up to 14 cm/year, coupled with continuous subsidence of up to 9 cm/year.  The mid-term dynamics of Grand Éboulis, spanning from 1950 to 2011, was investigated using a series of nine Digital Surface Models (DSM). Each DSM was derived from historical aerial photographs obtained by the French National Institute of Geographic and Forest Information (IGN) and processed through the photogrammetric workflow of Lucas and Gayer (2022). Preliminary findings indicate numerous catastrophic failures in or near the steepest slopes of the landslide that experience the highest velocity gradients. The sediment volumes involved in such events range from a few tens of thousands to millions of cubic meters, predominantly released into the nearby river and transported away from the landslide. Our results suggest that the Grand Éboulis landslide is in an active mobilisation phase with a continuous slow displacement primarily influenced by extreme climatic events and with catastrophic failures that release large volumes of sediments in the nearby river.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.