Abstract

BackgroundPrior MRI studies on vestibular migraine (VM) have revealed abnormalities in static regional intrinsic brain activity (iBA) and dynamic functional connectivity between brain regions or networks. However, the temporal variation and concordance of regional iBA measures remain to be explored.Methods57 VM patients during the interictal period were compared to 88 healthy controls (HC) in this resting-state functional magnetic resonance imaging (fMRI) study. The dynamics and concordance of regional iBA indices, including amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo), were examined by utilizing sliding time-window analysis. Partial correlation analyses were performed between clinical parameters and resting-state fMRI indices in brain areas showing significant group differences.ResultsThe VM group showed increased ALFF and ReHo dynamics, as well as increased temporal concordance between ALFF and ReHo in the bilateral paracentral lobule and supplementary motor area relative to the HC group. We also found decreased ReHo dynamics in the right temporal pole, and decreased ALFF dynamics in the right cerebellum posterior lobe, bilateral angular gyrus and middle occipital gyrus (MOG) in the VM group compared with the HC group. Moreover, a positive correlation was observed between ALFF dynamics in the left MOG and vertigo disease duration across all VM patients.ConclusionTemporal dynamics and concordance of regional iBA indices were altered in the motor cortex, cerebellum, occipital and temporoparietal cortex, which may contribute to disrupted multisensory processing and vestibular control in patients with VM. ALFF dynamics in the left MOG may be useful biomarker for evaluating vertigo burden in this disorder.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call