Abstract

A newly disclosed nonstandard finite difference method has been used to discretize a Lotka–Volterra model to investigate the critical normal form coefficients of bifurcations for both one‐parameter and two‐parameter bifurcations. The discrete‐time prey–predator model exhibits a variety of local bifurcations such as period‐doubling, Neimark–Sacker, and strong resonances. Critical normal form coefficients are determined to reveal dynamical scenarios corresponding to each bifurcation point. We also investigate the complex dynamics of the model numerically by Matlab package using MatcotM based on numerical continuation technique. The numerical continuation validates the theoretical analysis, which is discussed from an ecological perspective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.