Abstract
This paper presents the investigation of dynamic modeling and anaylsis of spherical joint with flexible socket joint model. Ball and socket are composing spherical joints which are modeled as two individual colliding components. A continuous force model is introduced for the normal contact–impact force. For the analysis of energy dissipation during contact process, Hertzian-based contact model is used. Generally, Hertzian contact model is used for the analysis of energy dissipation during the dynamic conditions of ball joint because it gives normal deformation of sphere parts of ball and socket joint. This model also describes the viscosity and shear response of the components with friction and adhesion. The pseudo-penetration that occurs between the potential contact points of the ball and the socket surface, as well as the indentation rate, plays a crucial role in the evaluation of the normal contact forces. In addition to this, different force models, such as Coulomb’s law, come into the picture. A friction model is taken for the analysis of friction at the interface of friction between ball and socket joint. The normal and tangential force is evaluated and included in the dynamic model of multibody dynamic system. In modern car, different types of ball joint are used for the better performance of the spherical joint. Geometrical and material parameters are modified to understand the behaviour of the failure and heavily loaded section. The manufacturing process also plays an important role in designing of the component of spherical joint.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.