Abstract

Purpose – The existence of clearance in joints of positioning mechanism is inevitable and the movements of the real mechanism are deflected from the ideal mechanism due to the clearances. The purpose of this paper is to investigate the effects of clearance on the dynamic characteristics of dual-axis positioning mechanism of a satellite antenna. Design/methodology/approach – The dynamics analysis of dual-axis positioning mechanism with clearance are investigated using a computational approach based on virtual prototyping technology. The contact model in joint clearance is established by using a hybrid nonlinear continuous contact force model and the friction effect is considered by using a modified Coulomb friction model. Then the numerical simulation of dual-axis positioning mechanism with joint clearance is carried out and four case studies are implemented for different clearance sizes. Findings – Clearance leads to degradation of the dynamic performance of the system. The existence of clearance causes impact dynamic loads, and influences the motion accuracy and stability of the dual-axis positioning mechanism. Larger clearance induces higher frequency shakes and larger shake amplitudes, which will deteriorate positioning accuracy. Practical implications – Providing an effective and practical method to analyze dynamic characteristics of dual-axis positioning mechanism of satellite antenna with joint clearance and describing the dynamic characteristics of the dual-axis positioning system more realistically, which improves the engineering application. Originality/value – The paper is the basis of mechanism design, precision analysis and robust control system design of dual-axis positioning mechanism of satellite antenna.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call