Abstract

A reaction–diffusion Gierer–Meinhardt system with homogeneous Neumann boundary condition on one-dimensional bounded spatial domain is considered in the present article. Local asymptotic stability, Turing instability and existence of Hopf bifurcation of the constant positive equilibrium are explored by analyzing in detail the associated eigenvalue problem. Moreover, properties of spatially homogeneous Hopf bifurcation are carried out by employing the normal form method and the center manifold technique for reaction–diffusion equations. Finally, numerical simulations are also provided in order to check the obtained theoretical conclusions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.