Abstract

This paper proposes a dynamic-model-based method for selecting significantly expressed (SE) genes from their time-course expression profiles. A gene is considered to be SE if its time-course expression profile is more likely time-dependent than random. The proposed method describes a time-dependent gene expression profile by a nonzero-order autoregressive (AR) model, and a time-independent gene expression profile by a zero-order AR model. Akaike information criterion (AIC) is used to compare the models and subsequently determine whether a time-course gene expression profile is time-independent or time-dependent. The performance of the proposed method is investigated on both a synthetic dataset and a real-life biological dataset in terms of the false discovery rate (FDR) and the false nondiscovery rate (FNR). The results show that the proposed method is valid for selecting SE genes from their time-course expression profiles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.