Abstract
The knowledge distillation uses a high-performance teacher network to guide the student network. However, the performance gap between the teacher and student networks can affect the student’s training. This paper proposes a novel knowledge distillation algorithm based on dynamic entropy correction, which adjusts the student instead of the teacher to reduce the gap. Firstly, the effect of changing the output entropy (short for output information entropy) on the distillation loss in the student is analyzed in theory. This paper shows that correcting the output entropy can reduce the gap. Then, a knowledge distillation algorithm based on dynamic entropy correction is created, which can correct the output entropy in real-time with an entropy controller updated dynamically by the distillation loss. The proposed algorithm is validated on the CIFAR100, ImageNet, and PASCAL VOC 2007. The comparison with various state-of-the-art distillation algorithms shows impressive results, especially in the experiment on the CIFAR100 regarding teacher–student pair resnet32x4–resnet8x4. The proposed algorithm raises 2.64 points over the traditional distillation algorithm and 0.87 points over the state-of-the-art algorithm CRD in classification accuracy, demonstrating its effectiveness and efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.