Abstract
We use results from long-time core-collapse supernovae simulations to investigate the impact of the late time evolution of the ejecta and of the nuclear physics input on the calculated r-process abundances. Based on the latest hydrodynamical simulations, heavy r-process elements cannot be synthesized in the neutrino-driven winds that follow the supernova explosion. However, by artificially increasing the wind entropy, elements up to A=195 can be made. In this way one can reproduce the typical behavior of high-entropy ejecta where the r-process is expected to occur. We identify which nuclear physics input is more important depending on the dynamical evolution of the ejecta. When the evolution proceeds at high temperatures (hot r-process), an (n,g)-(g,n) equilibrium is reached. While at low temperature (cold r-process) there is a competition between neutron captures and beta decays. In the first phase of the r-process, while enough neutrons are available, the most relevant nuclear physics input are the nuclear masses for the hot r-process and the neutron capture and beta-decay rates for the cold r-process. At the end of this phase, the abundances follow a steady beta flow for the hot r-process and a steady flow of neutron captures and beta decays for the cold r-process. After neutrons are almost exhausted, matter decays to stability and our results show that in both cases neutron captures are key for determining the final abundances, the position of the r-process peaks, and the formation of the rare-earth peak. In all the cases studied, we find that the freeze out occurs in a timescale of several seconds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.