Abstract
Heregulin (HRG) belongs to the family of EGFs and activates the receptor proteins ErbB3 and ErbB4 in a variety of cell types to regulate cell fate. The interactions between HRG and ErbB3/B4 are important to the pathological mechanisms underlying schizophrenia and some cancers. Here, we observed the reaction kinetics between fluorescently labeled single HRG molecules and ErbB3/B4 on the surfaces of MCF-7 human breast cancer cells. The equilibrium association and the dissociation from equilibrium were also measured using single-molecule imaging techniques. The unitary association processes mirrored the EGF and ErbB1 interactions in HeLa cells [Teramura Y, et al. (2006) EMBO J 25:4215-4222], suggesting that the predimerization of the receptors, followed by intermediate formation (between the first and second ligand-binding events to a receptor dimer), accelerated the formation of doubly liganded signaling dimers of the receptor molecules. However, the dissociation analysis suggested that the first HRG dissociation from the doubly liganded dimer was rapid, but the second dissociation from the singly liganded dimer was slow. The dissociation rate constant from the liganded monomer was intermediate. The dynamic changes in the association and dissociation kinetics in relation to the dimerization of ErbB displayed negative cooperativity, which resulted in apparent low- and high-affinity sites of HRG association on the cell surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.