Abstract

This paper proposes a modified optimal PIDD2 controller for flexible-link manipulator. The single flexible link is modeled mathematically in which the flexible link and base rotation are modeled as stiff systems using Lagrange’s method. The system obtained as a result will have one degree of freedom. In the proposed work, the comparison of two types of controller, i.e., PID and PIDD2, is done for controlling the position and trajectory of the single-link manipulator. The main objective is to control the trajectory with minimum tip oscillation. The tuning of the controllers is done using the Ziegler–Nichols (Z-N) method and Dynamic Particle Swarm Optimization (DPSO) algorithm. The dynamic particle swarm optimization algorithm is an improved version of the particle swarm optimization algorithm which identifies and eliminates the dilemma of stagnation and local optima. The findings show that the PIDD2 controller with dynamically tuned parameters is better in controlling the position and trajectory of the single-link manipulator. All the simulations were performed on MATLAB–SIMULINK.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.