Abstract

We propose a dynamically tunable surface plasmon polaritons (SPPs) waveguide system based on bulk Dirac semimetals (BDS) containing only a side-coupled T-shaped cavity. Plasmon-induced transparency (PIT) is achieved in the terahertz band by introducing a position offset. We have analytically investigated the spectral characteristics of PIT in this system, indicating that the larger the position offset, the higher the peak of the PIT window. The spectrum responses of PIT system can be flexibly regulated via transforming the geometric parameters of the structure. At the same time, it is particularly sensitive to the refractive index of the surrounding medium, which is promising for sensing devices. In addition, the resonance frequency and peak transmission can be actively adjusted by controlling the Fermi energy of the BDS without reconstructing the geometric structure. Moreover, the optical delay time near the PIT peak reaches 11.001 ps, which has good slow-light characteristics and is a candidate in the field of slow-light equipment. The structure we designed may have potential application value in the design of SPPs light-guide devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.