Abstract
We systematically examine how dynamic stresses from seismic waves following the 2014 M(s)7. 3 Yutian, Xinjiang, earthquake affect aftershocks and regional microseismicity in the near and far field. The full Coulomb stress changes are computed based on the discrete wavenumber method. We find that the static Coulomb stress changes caused by the M(s)7. 3 earthquake discourage aftershocks occurrence in the southwestern part of the aftershock zone, which may explain why the aftershock activity in this region is relatively weak. Aftershock rates at the region about 30 km to the northeast of the mainshock are relatively high, which are consistent with positive dynamic and static stress changes in that region, with the peak values of 2. 78 MPa and 0. 80 MPa, respectively. Aftershocks about 45 km north of the mainshock are mostly triggered by the dynamic stress change with a peak value of 0. 72 MPa. The peak values of dynamic stress change in the remote Shaya and Jiashi areas are 0. 09 MPa and 0. 1 MPa, respectively, which are high enough to trigger microearthquakes in these areas. Overall the spatial distributions of dynamic stress changes induced by the Yutian mainshock show asymmetrical patterns, and there is a positive correlation between the aftershock distribution and the positive area of dynamic stress change in the northeastern and northern regions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.