Abstract
Abstract Recent studies have demonstrated an arrangement of centrifugal pendulum vibration absorbers that is very effective at reducing torsional vibrations in rotating machinery. The basic system is composed of a pair of identical absorbers that are tuned to a one-half subharmonic order relative to the applied fluctuating torque. These absorbers, when moving in an out of phase manner along a particular path relative to the rotor, are capable of significantly reducing torsional vibrations of a desired order. In this paper we consider the response of systems composed of multiple pairs of these absorbers, with the goal of determining the dynamic stability of the desired response and the effects of small imperfections in the absorbers’ paths. The desired response of this system is one in which the N absorbers act as a single pair, with two groups of N/2 each moving with equal amplitude but exactly out of phase with respect to one another. It is shown that this response can be made to be dynamically stable and robust to certain model uncertainties by a slight, identical overtuning of each absorber. The analytical results, obtained by the method of averaging and symmetric bifurcation theory, are confirmed by simulations for the cases with two and three pairs of absorbers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.