Abstract

By using MgO(111) as a model system for polar oxide film growth, we show by first-principles calculations that H acts as a surfactant, i.e., the H changes its position and bonding during the growth process, remaining in the surface region. Continuous presence of H during the growth of MgO(111) film efficiently removes the microscopic dipole moment, thus enabling the growth of perfect fcc-ordered MgO(111) films. These theoretical predictions are confirmed experimentally by molecular beam epitaxy single crystal growth of MgO(111) on SiC(0001).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.