Abstract

In this paper we present a local coupled cluster approach based on a dynamical screening scheme, in which amplitudes are either calculated at the coupled cluster level (in this case CCSD) or at the level of perturbation theory, employing a threshold driven procedure based on MP2 energy increments. This way, controllable accuracy and smooth convergence towards the exact result are obtained in the framework of an a posteriori approximation scheme. For the representation of the occupied space a new set of local orbitals is presented with the size of a minimal basis set. This set is atom centered, is nonorthogonal, and has shapes which are fairly independent of the details of the molecular system of interest. Two slightly different versions of combined local coupled cluster and perturbation theory equations are considered. In the limit both converge to the untruncated CCSD result. Benchmark calculations for four systems (heptane, serine, water hexamer, and oxadiazole-2-oxide) are carried out, and decay of the amplitudes, truncation error, and convergence towards the exact CCSD result are analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.