Abstract
The physiological role of cystic fibrosis transmembrane conductance regulator (CFTR) in keratinocytes and skin wound healing is completely unknown. The present study shows that CFTR is expressed in the multiple layers of keratinocytes in mouse epidermis and exhibits a dynamic expression pattern in a dorsal skin wound healing model, with diminishing levels observed from day 3 to day 5 and re-appearing from day 7 to day 10 after wounding. Knockdown of CFTR in cultured human keratinocytes promotes cell migration but inhibits differentiation, while overexpression of CFTR suppresses migration but enhances differentiation, indicating an important role of CFTR in regulating keratinocyte behavior. In addition, we have demonstrated a direct association of CFTR with epithelial junction formation as knockdown of CFTR downregulates the expression of adhesion molecules, such as E-cadherin, ZO-1 and β-catenin, and disrupts the formation of cell junction, while overexpression of CFTR enhances cell junction formation. More importantly, we have shown that ΔF508cftr-/- mice with defective CFTR exhibit delayed wound healing as compared to wild type mice, indicating that normal function of CFTR is critical for wound repair. Taken together, the present study has revealed a previously undefined role of CFTR in regulating skin wound healing processes, which may have implications in injury repair of other epithelial tissues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.