Abstract

SummarySystemic lupus erythematosus (SLE) is a complex systemic autoimmune disease characterized by an overactive immune response to self-antigen. The overactivation of CD4+ Foxp3− conventional T cells (Tcons) and the inactivation of CD4+ CD25+ Foxp3+ regulatory T cells (Tregs) play important roles in the progression of SLE. Clinical trials showed that low-dose interleukin-2 (IL-2) is effective in treating SLE. Here, we developed a mathematical model involving Tcons, Tregs, natural killer (NK) cells, and IL-2 to simulate the dynamic processes involved in the treatment of SLE. We found an effective range of IL-2 dosage defined by the Tcon/Treg ratio in SLE treatment, termed the IL-2 dosage therapeutic window (IDTW). Our results showed that high levels of self-antigen result in a narrow IDTW and high post-treatment Tcon/Treg ratio. Furthermore, we proposed a classification method based on the ratio of pre-treatment Treg to CD4+ T cells to predict the treatment outcome of SLE patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.