Abstract
AbstractBipolar organic cathode materials (OCMs) implementing cation/anion storage mechanisms are promising for high‐energy aqueous Zn batteries (AZBs). However, conventional organic functional group active sites in OCMs usually fail to sufficiently unlock the high‐voltage/capacity merits. Herein, we initially report dynamically ion‐coordinated bipolar OCMs as cathodes with chalcogen active sites to solve this issue. Unlike conventional organic functional groups, chalcogens bonded with conjugated group undergo multielectron‐involved positive‐valence oxidation and negative‐valence reduction, affording higher redox potentials and reversible capacities. With phenyl diselenide (PhSe‐SePh, PDSe) as a proof of concept, it exhibits a conversion pathway from (PhSe)− to (PhSe‐SePh)0 and then to (PhSe)+ as unveiled by characterization and theoretical simulation, where the diselenide bonds are periodically broken and healed, dynamically coordinating with ions (Zn2+ and OTF−). When confined into ordered mesoporous carbon (CMK‐3), the dissolution of PDSe intermediates is greatly inhibited to obtain an ultralong lifespan without voltage/capacity compromise. The PDSe/CMK‐3 || Zn batteries display high reversibility capacity (621.4 mAh gPDSe−1), distinct discharge plateau (up to 1.4 V), high energy density (578.3 Wh kgPDSe−1), and ultralong lifespan (12 000 cycles) at 10 A g−1, far outperforming conventional bipolar OCMs. This work sheds new light on conversion‐type active site engineering for high‐voltage/capacity bipolar OCMs towards high‐energy AZBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.