Abstract

Heat rectifiers are systems that conduct heat asymmetrically for forward and reversed temperature gradients. We present an analytical study of heat rectification in linear quantum systems. We demonstrate that asymmetric heat currents can be induced in a linear system only if it is dynamically driven. This asymmetry emerges when the driving frequency favors the nonsymmetric heat exchange processes at the expense of the symmetric ones. Finally, we demonstrate the feasibility of such driven harmonic network to work as a thermal transistor, quantifying its efficiency through the dynamical amplification factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.