Abstract

We present dynamical effects on conformation in a simple bead-spring model consisting of three beads connected by two stiff springs. The conformation defined by the bending angle between the two springs is determined not only by a given potential energy function depending on the bending angle, but also by fast motion of the springs which constructs the effective potential. A conformation corresponding with a local minimum of the effective potential is hence called the dynamically induced conformation. We develop a theory to derive the effective potential using multiple-scale analysis and the averaging method. A remarkable consequence is that the effective potential depends on the excited normal modes of the springs and amount of the spring energy. Efficiency of the obtained effective potential is numerically verified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call