Abstract

Approximate heavy-quark spin and flavor symmetry and chiral symmetry play an important role in our understanding of the nonperturbative regime of strong interactions. In this work, utilizing the unitarized chiral perturbation theory, we explore the consequences of these symmetries in the description of the interactions between the ground-state singly charmed (bottom) baryons and the pseudo-Nambu-Goldstone bosons. In particular, at leading order in the chiral expansion, by fixing the only parameter in the theory to reproduce the $\Lambda_b(5912)$ [$\Lambda_b^*(5920)$] or the $\Lambda_c(2595)$ [$\Lambda_c^*(2625)$], we predict a number of dynamically generated states, which are contrasted with those of other approaches and available experimental data. In anticipation of future lattice QCD simulations, we calculate the corresponding scattering lengths and compare them to the existing predictions from a $\mathcal{O}(p^3)$ chiral perturbation theory study. In addition, we estimate the effects of the next-to-leading-order potentials by adopting heavy-meson Lagrangians and fixing the relevant low-energy constants using either symmetry or naturalness arguments. It is shown that higher-order potentials play a relatively important role in many channels, indicating that further studies are needed once more experimental or lattice QCD data become available.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.