Abstract

Wound healing from bacterial infections is one of the major challenges in the biomedical field. The traditional single administration methods are usually accompanied with side effects or unsatisfactory efficacy. Herein, we design dynamically evolving antibacterial and repair-promoting nanocomposites (NCs) by in situ self-assembling of zeolitic imidazolate framework-8 (ZIF-8) on the surface of barium titanate (BTO), and further loading with a small amount of ciprofloxacin (CIP). The new strategy of combining pH-stimulated drug delivery and ultrasound-controlled sonodyamics has the potential to dynamically evolve in infected wound sites, offering a multifunctional therapy. In vitro study demonstrates that the enhancement generation of reactive oxygen species through the sonodynamic process due to the heterostructures and a small amount of CIP released in an acidic environment are synergistically antibacterial, and the inhibition rate was >99.9%. In addition, reduced sonodynamic effect and Zn2+ generated along with the gradual degradation of ZIF-8 simultanously promote cell migration and tissue regeneration. The invivo study of full-thickness skin wounds in mouse models demonstrate a healing rate of 99.3% could be achieved under the treatment of BTO@ZIF-8/CIP NCs. This work provides a useful improvement in rational design of multi-stimulus-responsive nanomaterials for wound healing. STATEMENT OF SIGNIFICANCE: A novel piezoelectric nanocomposite was proposed to realize sonodynamic therapy and pH-stimulated drug releasing simultaneously in wound healing treatment. The dynamically evolving structure of the piezoelectric nanocomposite in acidic microenvironment has been theoretically and experimentally verified to contribute to a continuous variation of sonodymanic strength, which accompanied with the gradual releasing of drug and biocompatible Zn2+effectively balanced antibacterial and repair-promoting effects. Both of the in vitro and in vivo study demonstrated that the strategy could significantly accelerate wound healing, inspiring researchers to optimize the design of multi-stimulus-responsive nanomaterials for various applications in biomedical and biomaterial fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call