Abstract

Employing a recently developed approach to dynamically emergent quantum thermodynamics, we revisit the thermodynamic behavior of the quantum Otto cycle with a focus on memory effects and strong system-bath couplings. Our investigation is based on an exact treatment of non-Markovianity by means of an exact quantum master equation, modeling the dynamics through the Fano-Anderson model featuring a peaked environmental spectral density. By comparing the results to the standard Markovian case, we find that non-Markovian baths can induce work transfer to the system, and identify specific parameter regions which lead to enhanced work output and efficiency of the cycle. In particular, we demonstrate that these improvements arise when the cycle operates in a frequency interval which contains the peak of the spectral density. This can be understood from an analysis of the renormalized frequencies emerging through the system-bath couplings. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.