Abstract

We present a high-performance functional perfect absorber in a wide range of terahertz (THz) wave based on a hybrid structure of graphene and vanadium dioxide (VO2) resonators. Dynamically electrical and thermal tunable absorption is achieved due to the management on the resonant properties via the external surroundings. Multifunctional manipulations can be further realized within such absorber platform. For instance, a wide-frequency terahertz perfect absorber with the operation frequency range covering from 1.594 THz to 3.272 THz can be realized when the conductivity of VO2 is set to 100000 S/m (metal phase) and the Fermi level of graphene is 0.01 eV. The absorption can be dynamically changed from 0 to 99.98% and in verse by adjusting the conductivity of VO2. The impedance matching theory is introduced to analyze and elucidate the wideband absorption rate. In addition, the absorber can be changed from wideband absorption to dual-band absorption by adjusting the Fermi level of graphene from 0.01 eV to 0.7 eV when the conductivity of VO2 is fixed at 100000 S/m. Besides, the analysis of the chiral characteristics of the helical structure shows that the extinction cross-section has a circular dichroic response under the excitation of two different circularly polarized lights (CPL). Our study proposes approaches to manipulate the wide-band terahertz wave with multiple ways, paving the way for the development of technologies in the fields of switches, modulators, and imaging devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.