Abstract
Soft ionic conductors show great promise in multifunctional iontronic devices, but currently utilized gel materials suffer from liquid leakage or evaporation issues. Here, a dry ion-conducting elastomer with dynamic crosslinking structures is reported. The dynamic crosslinking structures endow it with combined advantageous properties simultaneously, including high ionic conductivity (2.04 × 10-4 S cm-1 at 25 °C), self-healing capability (96% healing efficiency), stretchability (563%), and transparency (78%). With this ionic conductor as the electrode, two soft iontronic devices (electroluminescent devices and triboelectric nanogenerator tactile sensors) are realized with entirely self-healing and stretchable capabilities. Due to the absence of liquid materials, the dry ion-conducting elastomer shows wide operational temperature range, and the iontronic devices achieve excellent stability. These findings provide a promising strategy to achieve highly conductive and multifunctional soft dry ionic conductors, and demonstrate their great potential in soft iontronics or electronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.